
52	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

T
ools are essential to collaboration among
team members, enabling the facilitation, au-
tomation, and control of the entire develop-
ment process. Adequate tool support is espe-
cially needed in global software engineering
because distance aggravates coordination

and control problems, directly or indirectly, through
its negative effects on communication.1

In this column, we present current collabora-
tive development environments and tools to enable
effective software development, either global or
collocated.2 Our summary is not comprehensive.
Rather, we identified technologies that really matter
by conducting surveys at recent ICGSE conferences
(see the sidebar) and in companies where we’re con-
sulting to improve their distributed engineering
capabilities.

Collaborative Development Tools
We briefly look into seven standard collaborative
development tools.

Version-Control Systems
Distributed software engineering needs system-
atic configuration management. A version-control
system lets team members share software artifacts

in a controlled manner. Subversion (SVN; http://
subversion.tigris.org) is a popular open source ver-
sion-control system that facilitates distributed file
sharing. SVN adopts a centralized architecture, in
which a single central server hosts all project meta-
data. Developers use SVN clients to check out a
limited view of the data on their local machines.

Today, several systems are using distributed ver-
sion control that operates in a peer-to-peer manner.
Examples include Git (www.git-scm.com), Mer-
curial (http://mercurial.selenic.com), and Darcs
(www.darcs.net). Unlike centralized tools that let
developers check out a project from a distributed
version-control system, the peer-to-peer systems
provide a complete clone of the project’s repository
(called a fork) on local machines, not a just a por-
tion of it.

Trackers
Trackers are used to manage issues (or “tickets”)
such as defects, changes, or requests for support.
The tracking function centers on a database that all
team members can access through the Web.

Distributed trackers such as, Jira (www.
atlassian.com) are a generalization of bug-track-
ing systems such as Bugzilla (www.bugzilla.org),

Filippo Lanubile, Christof Ebert, Rafael Prikladnicki, and Aurora Vizcaíno

Software engineering involves people collaborating to develop better software. Collaboration is challeng-
ing, especially across time zones and without face-to-face meetings. We therefore use collaboration tools
all along the product life cycle to let us work together, stay together, and achieve results together. Authors
Filippo Lanubile, Rafael Prikladnicki, Aurora Vizcaíno, and I provide an overview of tools and technolo-
gies for improved collaboration. Our article summarizes experiences and trends chosen from recent IEEE
International Conference on Global Software Engineering (IGSCE) conferences.

I look forward to hearing from both readers and prospective column authors about this column and the
technologies you want to know more about. —Christof Ebert

Collaboration Tools
for Global Software
Engineering

software technology
E d i t o r : C h r i s t o f E b e r t n V e c t o r C o n s u l t i n g n c h r i s t o f . e b e r t @ v e c t o r - c o n s u l t i n g . d e

	 March/April 2010 I E E E S O F T W A R E 	 53

SOFTWARE TECHNOLOGY

originally developed by the Mozilla proj-
ect. A recorded issue includes an identifier,
a description, and information about the
author; it also defines a life cycle to help
team members track issue resolutions.

Build Tools
The more distributed the project, the
greater the need for secure, remote reposi-
tory and build management. Build tools
such as Maven (http://maven.apache.org)
and CruiseControl (http://cruisecontrol.
sourceforge.net) let projects maintain re-
mote repositories and create and schedule
workflows. The workflows facilitate con-
tinuous integration for executing scripts,
compiling binaries, invoking test frame-
works, deploying to production systems,
and sending email notifications to develop-
ers. A Web-based dashboard shows the sta-
tus of current and past builds.

Modelers
Model-based collaboration is what distin-
guishes collaborative software engineering
from more general collaboration activi-
ties that share only files and not content.3
Collaborative modeling tools such as Ar-
tisan Studio (www.artisansoftwaretools.
com), Rational Software Modeler (www.
ibm.com/software/awdtools/modeler/
swmodeler), and Visible Analyst (www.
visible.com/Products/Analyst) help develop-
ers create formal or semiformal software
artifacts, including visual Unified Modeling
Language (UML) models and customized
software processes.

Knowledge Centers
These are content management systems that
let team members share explicit knowledge
on the Web. A knowledge center, such as
the Eclipse help system (http://help.eclipse.
org) or KnowledgeTree (www.ktdms.com),
might contain internal documents, techni-
cal references, standards, FAQs, and best
practices. Knowledge centers can also in-
clude sophisticated knowledge manage-
ment activities, such as expert identifica-
tion and skills management, to acquire tacit
knowledge in explicit forms.

Communication Tools
Software engineers have adopted a wide
range of mainstream project communica-
tion technologies when direct interaction
isn’t possible. Asynchronous communi-

cation tools include email, mailing lists,
newsgroups, Web forums, and—more re-
cently—blogs. Synchronous tools include
standard telephone and conference calls,
chat, instant messaging, voice over IP, and
videoconferencing.

WebEx (www.webex.com) is the mar-
ket leader for online meeting facilities.
Both WebEx and WorkSpace3D (www.
tixeo.com) provide a rich interface for syn-
chronous and asynchronous collaboration.
They enable voice and video over IP com-
munication while viewing and editing doc-
uments, desktop and application sharing,
co-browsing and whiteboard drawing, and
meeting persistence for later replay.

The text-based eConference (http://
code.google.com/p/econference) is a lean
tool that supports distributed teams need-
ing synchronous communication and
structured-discussion services.4 Such tools
provide closed-group chat that’s aug-
mented with agendas, meeting minutes-
editing and typing-awareness capabilities,
and hand-raising panels to enable turn-
based discussions.

General communication tools—that is,
those that aren’t specific to software engi-
neering—fall in the category of groupware,5
combining tools for document sharing and
review, concurrent editing, and shared cal-
endars. However, the term “groupware”
has fallen into disuse in favor of terms such
as “collaborative software” or “social soft-
ware.” Popular multifunction collaboration
platforms are IBM Lotus Notes/Domino
(www.ibm.com/software/lotus/notesand-
domino) and Microsoft SharePoint (www.
microsoft.com/SharePoint).

Google Wave (wave.google.com) is a re-
cent collaboration platform designed to let
people at different locations simultaneously
edit documents and other artifacts without
the classic checkout or delta mechanisms.

However, Google Wave also reveals the
limited efficiency and effectiveness of si-
multaneous offline collaboration because
individuals have difficulty keeping track of
the many parallel changes and interrupts
while still trying to work on their own
contributions.

Web 2.0 Applications
Web 2.0 extends traditional collaborative
software by means of direct user contribu-
tions, rich interactions, and community
building. Some key Web 2.0 applications
are blogs, such as WordPress (http://word-
press.org); microblogs, such as Twitter
(http://twitter.com); wikis, such as the Port-
land Pattern Repository (http://c2.com/
cgi/wiki), social networking sites, such as
LinkedIn (www.linkedin.com), and collab-
orative tagging systems, such as Delicious
(http://delicious.com).

Recently, Web 2.0 applications have
become quite common in open source and
global software projects. They represent
a valuable means to increase the informal
communication exchanged among team
members. For example, wiki platforms
have emerged as a practical, economical
option for creating and maintaining group
documentation.6

Collaborative Development
Environments
A CDE gives a project workspace with a
standardized tool set for global software
teams. CDEs combine several of the tools
we’ve described and thus offer a friction-
less development environment to increase
developer comfort and productivity.7
Several CDEs are available as commer-
cial products or open source initiatives—
increasingly, as online services hosted
externally.

CDEs are borrowing successful features

International Conference on Global Software Engineering
Collaboration in distributed teams is pervasive in today’s IT and software indus-
try. The annual IEEE International Conference on Global Software Engineering
(ICGSE) brings together researchers and practitioners interested in exploring how
globally distributed teams work and how to meet the challenges they pose. Previ-
ous conferences attracted a broad audience from industry and academia. ICGSE
2010 will be held on 23–26 August 2010 in Princeton, New Jersey, USA.

For more information or to participate, see the conference Web site at www.
icgse.org.

54	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

SOFTWARE TECHNOLOGY

typically available on social network sites.
For instance, Assembla (www.assembla.
com) notifies users of project-related events
via Twitter; GitHub (http://github.com) of-
fers a Twitter-like approach to monitoring a
project’s progress; Rational Team Concert
(www.ibm.com/software/awdtools/rtc)
borrows Delicious’s tagging feature, letting

developers assign free keywords to man-
aged items.

Table 1 highlights a selection of CDEs
and shows how they support these tools.

Specific Collaboration Tools
CDEs are often unsuitable in companies
because of legacy tools or environments

that must be enhanced with specific col-
laboration functionalities. In these situa-
tions, developers can choose from collabo-
ration tools that map to typical life-cycle
activities.

Project Management
Collaborative project management tools

Table 1
Collaborative development environments

CDE

Collaborative development tools

Version-
control systems Trackers Build tools Modelers

Knowledge
centers

Communication
tools

Web 2.0
applications

SourceForge
(sourceforge.
net)

CVS,* SVN,
Git, Mercurial,
Bazaar**

Bugs, feature
requests,
patches, sup-
port requests

No No No Mailing lists;
forums

Feeds; hosted
applications for
blogs, micro-
blogs and wikis

GForge
(gforge.org)

CVS, SVN,
Perforce†

Tasks and
issues (bugs,
feature
requests,
patches, sup-
port requests)

Integrating
CruiseControl

No Document
manager

Mailing lists;
forums

Feeds, wiki

Trac
(trac.
edgewall.
org)

SVN; plug-ins
for integrating
Git, Perforce,
Mercurial,
Darcs, Bazaar

Tickets
(tasks, feature
requests, bugs,
support issues)

Bitten plug-ins
for integrating:
Continuum,
CruiseControl,
Hudson‡

Project
roadmap

As wiki Plug-in
for forums

Wiki, feeds,
plug-ins for
tagging tickets
and wiki pages

Google Code
(code.
google.com)

SVN, Mercurial;
integrating Git

Issues (defects,
enhancements,
tasks)

No No As wiki Integrating
Google Groups

Wiki, feeds

Assembla
(www.
assembla.
com)

SVN, Git,
Mercurial

Tickets (tasks,
enhancements,
ideas, defects)

No Milestones,
agile planner

As wiki Message board,
chat

Wiki,
microblog,
feeds

Rational
Team
Concert
(jazz.net/
projects/
rational-
team-
concert)

Built-in Work items
(defects,
enhancements,
plan items,
retrospectives,
risk, stories,
tasks, build
items, use
cases)

Built;
integrating
Ant,§ Maven

Process
templates

Integrating
MS Share-
Point and
Lotus Quickr
document

Instant
messaging

Feeds, wiki,
tagging work
items

GitHub
(github.com)

Git Issues No No As wiki No Feeds, wiki,
social networks

Launchpad
(launchpad.
net)

Bazaar Bugs;
integrating
with external
trackers

No Blueprints
(specifications
of features
or processes)

Questions
and answers

Mailing lists No

CodePlex
(www.
codeplex.
com)

Built-in Work items
(features,
issues, tasks)

CruiseControl.
NET

Documentation
tab

As wiki Mailing lists,
discussions list

Feeds, wiki

*CVS: Concurrent Versions System (www.nongnu.org/cvs)
**Bazaar (http://bazaar.canonical.com)
†Perforce (www.perforce.com)
‡Hudson (http://hudson-ci.org)
§Ant (http://ant.apache.org)

	 March/April 2010 I E E E S O F T W A R E 	 55

SOFTWARE TECHNOLOGY

such as ActiveCollab (www.activecollab.
com) and WorldView8 offer a Web-based
interface to manage project information
for calendars and milestone tracking. Such
tools give managers an overview of proj-
ect status at different detail levels, such as
team member locations and contact infor-
mation. WorkSpaceActivityViewer pro-
vides an overview of ongoing project activ-
ities by using information extracted from
developers’ workspaces.9

Requirements Engineering
Major RE tools such as Doors (www.
ibm.com/software/awdtools/doors) and
IRqA (www.visuresolutions.com) let mul-
tiple engineers use natural language text
to describe project use cases and require-
ments and to record dependencies among
and between them. Both tools have a
document-oriented, Word-based inter-
face. They also provide a Web interface
for users who need access to requirements
information but not to local installations.

The collaboration tool eRequirements
(www.erequirements.com) is entirely Web-
based. It has abandoned a MS Word-
based interface but provides Web access
to collaboratively explore and manage use
cases and requirements.

Design
Camel supports virtual software-design
meetings by capturing and storing all
design-relevant information, role defini-
tions, and version control coordination.10
It includes playback features to review a
session once it has ended.

Prominent design and modeling tools,
such as Gliffy (www.gliffy.com) and Cre-
ately (http://creately.com) support multiple
diagram types such as UML or Business
Process Modeling Notation. They also
offer special features that simplify team
communication and collaboration, such as
tools for commenting, creating blogs, or
even managing knowledge. Furthermore,
Gliffy can be integrated with the Jira dis-
tributed tracking system.

Test
TestLink (http://testlink.sourceforge.net) is
a popular tool for managing the entire test-
ing process. It has a Web-based interface
that’s accessible everywhere from a browser.
It organizes test cases into test plans. Users
can import and execute groups of test cases

by using one or more keywords that they
have previously assigned to the test cases.

On the other hand, Selenium (http://
seleniumhq.org) is a tool suite to au-
tomate Web application testing across
many platforms. It includes an integrated
development environment (IDE) for writ-
ing and running tests, a remote-control
tool for controlling Web browsers on
other computers, a Web-based quality-
assurance tool, and an Eclipse plug-in to
write Selenium and Watir (http://watir.
com) tests.

Finally, OpenSTA (http://opensta.org)
is a distributed software-testing architec-
ture that can perform scripted HTTP and
HTTPS heavy-load tests with performance
measurements from Win32 platforms.

Trends in Collaboration Tools
New collaboration tools and associated
best practices are emerging almost daily.
We see two major trends. First, practically
all engineering tools will provide collabo-
ration features. These features help indi-
vidual tools shared by a team, but they’re
implemented differently on different tools
and so don’t allow data integration across
tools. A second, related trend is improved
federation of engineering tools. Eclipse
will help initially, but ensuring efficiency,
consistency, and information security
across multiple tools, teams, and com-
panies finally requires a strong product
life-cycle management (PLM) strategy.
Tools such as Teamcenter (www.siemens.
com/teamcenter) and Easee (www.vector.
com/easee) allow secure federation and
collaborative work with integrated data
backbones.

No current tool or CDE supports all
the activities necessary for global soft-
ware engineering. Users must therefore
prioritize their collaboration needs and
the tools to support them. Introducing
collaboration technology should be a
stepwise process, starting with a collab-
oration platform to share applications.
A consistent PLM strategy can evolve
in parallel with this process, providing
mechanisms to guide and align technolo-
gies to the degree necessary. Such a strat-
egy is valuable when working in external
networks with participants from different
organizations. Within one company, us-
ers should move to a CDE as part of their
overall PLM.

E ffective tool support for collabora-
tion is a strategic initiative for any
company with distributed resources,

no matter whether the strategy involves
offshore development, outsourcing, or
supplier networks. Software needs to be
shared, and appropriate tool support is
the only way to do this efficiently, consis-
tently, and securely.

References
 1. E. Carmel and R. Agarwal, “Tactical Ap-

proaches for Alleviating Distance in Global
Software Development,” IEEE Software, vol.
18, no. 2, 2001, pp. 22–29.

 2. C. Ebert, Global Software Engineering:
Distributed Development, Outsourcing, and
Supplier Management, Wiley-IEEE CS Press,
2010.

 3. J. Whitehead, “Collaboration in Software
Engineering: A Roadmap,” Proc. Int’l Conf.
Software Eng. (ICSE 07), IEEE CS Press,
2007, pp. 214–225.

 4. F. Calefato and F. Lanubile, “Using Frame-
works to Develop a Distributed Conferencing
System: An Experience Report,” Software:
Practice and Experience, vol. 39, no. 15,
2009, pp. 1293–1311.

 5. C.A. Ellis, S.J. Gibbs, and G. Rein, “Group-
ware: Some Issues and Experiences,” Comm.
ACM, vol. 34, no. 1, 1991, pp. 39–58.

 6. P. Louridas, “Using Wikis in Software De-
velopment,” IEEE Software, vol. 23, no. 2,
2006, pp. 88–91.

 7. G. Booch and A.W. Brown, “Collaborative
Development Environments,” Advances in
Computers, vol. 59, 2003, pp. 2–29.

 8. A. Sarma and A. van der Hoek, “Towards
Awareness in the Large,” Proc. Int’l Conf.
Global Software Engineering (ICGSE 06),
IEEE CS Press, 2006, pp. 127–131.

 9. R. Ripley, A. Sarma, and A. van der Hoek, “A
Visualization for Software Project Aware-
ness and Evolution,” Proc. Int’l Workshop on
Visualizing Software for Understanding and
Analysis (VISSOFT 2007), pp. 137–144.

 10. M. Cataldo et al., “CAMEL: A Tool for Col-
laborative Distributed Software Design,” Proc.
Int’l Conf. Global Software Eng. (ICGSE 09),
IEEE CS Press, 2009, pp. 83–92.

Filippo Lanubile is an associate professor of computer
science at the University of Bari. Contact him at lanubile@
di.uniba.it.

Christof Ebert is managing director and partner at Vec-
tor Consulting Services, a consulting and research firm focused
on improving technical product development. Contact him at
christof.ebert@vector.com.

Rafael Prikladnicki is an assistant professor at the
Computer Science School and project manager coordina-
tor at the Technological Management Agency at Pontifícia
Universidade do Rio Grande do Sul (PUCRS). Contact him at
rafaelp@pucrs.br.

Aurora Vizcaíno is an associate professor in the Uni-
versity of Castilla-La Mancha’s Computer Science Department.
Contact her at aurora.vizcaino@uclm.es.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

